Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil.

نویسندگان

  • Rong Yao
  • Rui Wang
  • Dan Wang
  • Jing Su
  • Shixue Zheng
  • Gejiao Wang
چکیده

A Gram-stain-positive, rod-shaped, facultatively anaerobic bacterium, designated strain ES3-24(T), was isolated from a selenium mineral soil. The isolate was endospore-forming, nitrate-reducing and motile by means of peritrichous flagella. The major menaquinone was menaquinone 7 (MK-7) and the predominant fatty acids (>5%) were anteiso-C15:0, iso-C16:0, C16:0 and anteiso-C17:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and two unknown aminophospholipids. Strain ES3-24(T) contained meso-diaminopimelic acid in the cell-wall peptidoglycan and the DNA G+C content was 49.6 mol%. According to phylogenetic analysis based on the 16S rRNA gene sequence, strain ES3-24(T) was most closely related to Paenibacillus terrigena A35(T), with 16S rRNA gene sequence identity of 98.3%, while the other members of the genus Paenibacillus had 16S rRNA gene sequence identities of less than 95.0%. DNA-DNA relatedness between strain ES3-24(T) and P. terrigena CCTCC AB206026(T) was 39.3 %. In addition, strain ES3-24(T) showed obvious differences from closely related species in major polar lipids, nitrate reduction and other physiological and biochemical characteristics. The data from our polyphasic taxonomic study reveal that strain ES3-24(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus selenitireducens sp. nov. is proposed. The type strain is ES3-24(T) ( = KCTC 33157(T) = CCTCC AB2013097(T)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-quality-draft genomic sequence of Paenibacillus ferrarius CY1T with the potential to bioremediate Cd, Cr and Se contamination

Paenibacillus ferrarius CY1T (= KCTC 33419T = CCTCC AB2013369T) is a Gram-positive, aerobic, endospore-forming, motile and rod-shaped bacterium isolated from iron mineral soil. This bacterium reduces sulfate (SO42-) to S2-, which reacts with Cd(II) to generate precipitated CdS. It also reduces the toxic chromate [Cr(VI)] and selenite [Se(VI)] to the less bioavailable chromite [Cr(III)] and sele...

متن کامل

Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (AN...

متن کامل

Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader.

We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7(T) (= CECT 8558(T) = DSM 29760(T)), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties.

متن کامل

Desulfurispirillum indicum sp. nov., a selenate- and selenite-respiring bacterium isolated from an estuarine canal.

Strain S5(T), a novel bacterium that was isolated for its capability to respire selenate to elemental selenium, is described. In addition to selenate respiration, it was also capable of dissimilatory selenite, arsenate and nitrate reduction with short-chain organic acids such as pyruvate, lactate and acetate as the carbon sources and electron donors. The isolate was unable to grow fermentativel...

متن کامل

Formation of Se (0) Nanoparticles by Duganella sp. andAgrobacterium sp. isolated from Se-laden soil of North-East Punjab, India

BACKGROUND Selenium (Se) is an essential trace element, but is toxic at high concentrations. Depending upon the geological background, the land use or on anthropogenic pollution, different amounts of Se may be present in soil. Its toxicity is related to the oxyanions selenate and selenite as they are water soluble and bioavailable. Microorganisms play an important role in Se transformations in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of systematic and evolutionary microbiology

دوره 64 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2014